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1. INTRODUCTION

THE ANALOGY between fluid friction and heat or mass transfer
was introduced by Reynolds [1] in 1874 for fluid of Pr = 1.
Some modified analogies for Pr>1 have also been
developed by Prandtl [2], Karman {3}, and Colburn [4].
These analogies have been applied successfully to laminar
and turbulent forced convection flows over a flat plate and
in pipes. If one of the friction coefficient, the heat transfer
Nusselt number, and the mass transfer Sherwood number is
known, the other two are readily obtainable through these
analogies.

Although these analogies are very useful for forced con-
vection of Pr > 1, they are not valid for the case of Pr < 1.
For the sake of completeness, we have recently developed an
analogy for small Prandtl numbers [5]. We have also pro-
posed analogies [6] for the laminar natural convection on
vertical and horizontal flat plates with uniform wall tem-
perature or heat flux.

Now, it is the time to ask the question : whether the analogy
for the mixed convection exists? If it does exist, what would
be the form of the analogy? This work intends to find the
answer.

2. FORMULATIONS

In the analysis of laminar mixed convection heat transfer
from vertical and horizontal flat plates with uniform wall
temperature {UWT) and uniform wall heat flux (UHF}, an
appropriate mixed convection parameter has been intro-
duced [7-10] as

& =[1+(wRe)'?/(cRa)'"]! H
where
@ = Pr/(1+Pr}'"*; o= Pri(1+Pr) {2)
and
Re = u,x/v, Ra=gfT*x*fav 3)

are, respectively, the Reynolds number and the Rayleigh
number with the characteristic temperature 7* = T, — T,
for the UWT case and T* = ¢, x/k for the UHF case. For a
vertical plate, # =4 for the UWT case and n = 5 for the
UHF case. For a horizontal plate, # = 5 and 6 for the UWT
and UHF cases, respectively. The parameter ¢ describes the
relative strength of the buoyancy force to the inertia force.
For the case of pure forced convection, ¢ = 0, while, for the
case of pure free convection, & = 1.

Very precise numerical solutions of laminar mixed con-
vection from various flat plates have been reported [7-9]
over the entire mixed convection region (0 < & < 1) for any
Prandtl number between 0.001 and infinity. The wall shear
stress can be calculated from these numerical results by the
relation

r = p(g—;) = plavp ) f (. 0) @

where
A= (wRe)'*+(oRa)'" 5

and f"(&,0) is the second derivative of the dimensionless
stream function f = y/ad at the wall. The prime denotes
partial differentiation with respect to the dimensionless coor-
dinate # = { y/x)4. In addition, for the case of uniform wall
temperature the local Nusselt number can be obtained from

Nu= —A0'(£,0) (6}

in which €'(£,0) is the gradient of the dimensionless tem-
perature 8(¢,n) = (T— T,)(T,,— T..) at the wall, while for
uniform heating

Nu = A$(,0) O

where the dimensionless wall
Dividing equation (4) by equation (6) or (7) gives

temperature ¢(£,0) =

/N = pl@ )T 0) ®
where
) "(£,0
reo=-5Ed o reo-renseo. o

Furthermore, by using the following relation between A and

4

A= (0Re)P|(1-&) = (cRa)'"[¢ 10y
and the definitions of the friction coefficients
Cr=2t./pul; Cx=1./(pav/x%) (1
equation (8) becomes
(- B YU (P
or
S “2( Pr )2/}(5, 0). (13)
NuRa*" 1+Pr

It is our purpose to find a function of Prandt! number,
P(Pr), and a function of mixed convection parameter, X(¢),
such that for each of the four mixed convection cases the
numerical results of

G2 X@ PP
PPAX(E) =22 2
Nu/Re ( I‘) (é) (1 __é)z (1 +Pr)l/3

reEo 4

or
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NOMENCLATURE
a,b,¢ constants Greek symbols
G, local friction coefficient, 2t,/pu’ % thermal diffusivity [m* s~ ']
Cy local friction coefficient, t,/(pav/x?) B thermal expansion coefficient [K ']
! dimensionless stream function, i /a4 I'(E.0) —f"(£,0)/6°(&,0) for UWT ; and
g gravitational acceleration [m s™?] (& 0yp(E, 0) for UHF
h local heat transfer coefficient n dimensionless coordinate, ( 1/x)4
Bs'm K™ 0 dimensionless temperature.
k thermal conductivity of fluid (T-THNT,—T,)
Fs'm K™ J. (wRe)'*+ (6Ra)'"
Nu local Nusselt number, hx/k v kinematic viscosity [m~ s~ ']
P function of Pr i mixed convection parameter,
Pr Prandtl number. v/x [1+(wRe)'"*/(gRa)" "]~
Gy wall heat flux [J s~ m~7] P density [kg m™)
Ra Rayleigh number, gBT*x* /av o Pri(1+ Pr)
Re Reynolds number, u , x/v 7, wall shear stress, pv(du/dy),_, (kgm™'s7?]
T fluid temperature [K] ] dimensionless temperature,
T* characteristic temperature, T, — T, for (T—T,)A/(qux]k)
UWT: and ¢, x/k for UHF [K] w Pri(1+ Pr)'?.
u velocity component in x direction [m s™']
X,) coordinates parallel and normal to the plate Subscripts
[m] w adjacent to the wall
X function of ¢. AL far from the wall.
Cw o X ProN G2 _oh
Nure PENX(© = = P(Pr)(] - PF) [0 (8 Nu/RePr 2 (18)

are close to a constant over a wide range of Pr and ¢.

3. ANALOGIES FOR THE FORCED CONVECTION
DOMINATED REGION

At the forced convection dominated region of 0 < & < 0.2
and for 0.7 < Pr < o, the functions P(Pr) = Pr'? and
X(&) = 1 are appropriate for both the UWT and UHF cases.
These functions and the numerical data of f“(&,0) and
#(&,0) or ¢(&,0) were substituted into equation (14), and
the results have been presented in Table 1. Tt is found from
this table that the numerical results of

=(1=&)"° ‘PL_
==9 I+ Pr

Cu 13
e > r.0) (16)
NujRePr'-

are close to a constant, i.e. 0.98 ~ 1.02 for UWT; and
0.716 ~ 0.73 for UHF. As a result, in the forced convection

dominated region (0 < & < 0.2) the analogy can be stated as
Ci/2
NujRePr'"?

for the case of uniform wall temperature ; and

=1 (an

for the case of uniform heating. These analogies are valid
over the range of 0.7 < Pr < «. Note that equation (17) is
exactly the Colburn analogy [4].

4. ANALOGY FOR THE NATURAL CONVECTION
DOMINATED REGION

When 1 = 4 and the numerical data of /”(&, 0) and (£, 0)
for laminar mixed convection from an isothermal vertical
plate [7] have been substituted into equation (13), it is very
interesting to find that the numerical results of

Cy/2 _ 1 < Pr (19)

12
T'(,0
NuRa'? 1+Pr) 0

converge to a constant about 1.15 for any £ and Pr in the
region of 0.6 < & < 1 and 0.7 < Pr < oo, as has been shown
in Table 2.

It is more interesting to find that, in the region of
0.6 < &< 1and 0.7 < Pr < =, the numerical results of

28

(‘ /r2 P. (n--4)2n l / P N2
B T =— (‘—v’— .0 (20
NuRa*" \1+Pr 23\ 1+ Pr

Table 1. Numerical results of (C/2)/(Nu/RePr'?) in the forced con-
vection dominated region

& Pr=0.7 1 10 100 1000 10000
UWT case:
0 1.007 1.000 0.9847 0.9806 0.9805 0.9805
0.1 1.008 1.001 0.9877 0.9813 0.9812 0.9812
0.2 1.021 1.013 1.006 0.9934  0.9942  0.9943
UHF case:
0 0.7264 0.7235 0.7185 0.7162 0.7161 0.7161
0.1 0.7267 0.7237 0.7204 0.7164 0.7164  0.7164
0.2 0.7278 0.7293 0.7212 0.7212

0.7212
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Table 2. Numerical results of (Cx/2NuRa*")[Pr/(1+ Pr)]"~*"*" in the
natural convection dominated region

¢ Pr=07 1 10

100 1000 10000

Vertical plate, UWT case (n = 4):
0.6 1.122 1.157 1.196
0.7 1.138 1.139 1.155
0.8 1.136 1.134 1.140
0.9 1.137 1.133 1.135
1 1.137 1.133 1.134

Vertical plate, UHF case {rn = 5):
0.6 1.111 1.127 1.189
0.7 1.158 1.168 1.206
0.8 1.183 1.189 1.215
0.9 1.194 1.199 1.218
1 1.197 1.201 1.218

1.213 1.220 1.222
1171 1.178 1.180
1.155 1.162 1.165
1.150 1.158 1.161
1.149 1.157 1.160

1.208 1.213 1.214
1.217 1.220 1.220
1.221 1.222 1.223
1.222 1.223 1.224
1.222 1.223 1.224

Horizontal plate, UWT case (n = 5):

0.6 1.022 1.032 1.087
0.7 1.022 1.028 1.062
0.8 1.027 1.031 1.055
0.9 1.030 1.032 1.053
1 1.030 1.033 1.052

1.100 1.099 1.106
1.074 1.078 1.079
1.066 1.070 1.071
1.063 1.068 1.069
1.063 1.067 1.069

Horizontal plate, UHF-case (n = 6):

0.6 0.964 0.967 1.045
0.7 0.990 1.003 1.047
0.8 1.003 1.013 1.049
0.9 1.009 1.018 1.049
1 1.010 1.018 1.049

1.050 1.052 1.064
1.047 1.047 1.043
1.047 1.046 1.046
1.047 1.045 1.045
1.047 1.045 1.045

approach to a constant for each of the other three mixed
convection cases. Consequently, in the natural convection
dominated region, P(Pr) = [Pr/(1+Pr)]"~**"and X(£) = 1
for the four mixed convection cases.

In the natural convection dominated region (0.6 < £ < 1)
and for moderate and large Prandtl numbers (0.7 <
Pr < o), the analogies between fluid friction and heat trans-
fer of the four convection cases can be expressed in a general

form as
Cn/2 Pr \v—Yi» _ 21
NuRa2 \1+Pr =¢ (

where the constant ¢ = 1.15 and 1.20 for the cases of a
vertical plate with uniform wall temperature and heat flux,
respectively. For laminar mixed convection over a horizontal
plate, ¢ = 1.05 for the UWT case and 1.02 for the UHF case.

5. ANALOGY FOR THE TRUE MIXED
CONVECTION REGION

In this section, we try to find the analogies for the four
mixed convection cases in the region of 0.2 < £ < 0.6 where
the buoyancy and inertia forces are comparable in magni-
tude. By multiplying equation (12) with

P(Pr) = Pr'® (—P' )W 2)
i+Pr

we found that, for each of the four convection cases, the
numerical results of

Ci/2 Pr \* . { Pr \V®
W<I+Pr) =(=9 2(:;,) reo @3

are nearly a constant over the range of 0.7 < Pr< oo fora
specified value of & between 0.2 and 0.6. These numerical

results are almost independent of Pr and can be regarded as
a function of .

To correlate the numerical data of equation (23) over the
range of 0.2 < £ <€ 0.6, we chose, after many trials, the form

of
Cif2 Pro O\ .
W(1+pr) =t @9

The constants a and b for the four mixed convection cases
have been determined and presented in Table 3. Comparison
of equation (24) with the numerical data of mixed convection
on vertical and horizontal plates has been made in Figs. 1 and
2, respectively. These figures indicate fairly good agreement.
Over the entire region of 0.2 < & < 0.6 and 0.7 < Pr < o,
the maximum deviations of equation (24) from the numerical
data are less than 3 and 4.5% for vertical plate with UWT
and UHF, respectively. The maximum errors for horizontal
plate with UWT and UHF are 2.8 and 4%, respectively.

Table 3. Values of @ and b in the analogy
equation (24) for the four mixed con-
vection cases

Cases a b

Vertical plate:

UWT case I 103

UHF case 0.7 106
Horizontal plate :

UWT case 0.96 88

UHF case 0.69 88
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Fi6. 1. Comparison between the correlation equation and

the numerical data of [Ci/(2Nu/RePr [ Pri(3 + Pry]'* for

a vertical plate with (a) uniform wall temperature: (b) uni-
form heat flux,

It is worth to note that equation (24) can be reduced
easily to equation (17) or (i8)for { £ 0.2and 0.7 < Pr < .
Equation (24) can also be reduced to equation (21) for
£ = 0.6 via a relation between C;/(Nu/Re) and C/(NuRa*"),
which is obtainable from equations (14) and (15).

6. CONCLUSIONS

The analogies between heat transfer and fluid friction of
laminar mixed convection on vertical and horizontal flat
plates with uniform wall temerature and heat flux have been
developed in this paper for moderate and large Prandtl num-
bers (0.7 < Pr < o). Three different analogies have been
proposed for the forced convection dominated region
(0 < & £0.2), the natural convection dominated region
(0.6 < &< 1), and the true mixed convection region
(0.2 < £ <0.6) as equations (17), (21), and (24), respec-
tively.
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